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ABSTRACT 

Coulter counters are used to count and size small particles suspended in an electrolyte by measuring the number 

and the amplitude of intermittent changes in electrical current as particles flow through a small aperture between 

two electrodes. We have recently introduced a technique, Microfluidic CODES, which transforms the Coulter coun-

ter into a code-multiplexed sensor network for distributed sensing of particles dispersed over a lab-on-a-chip device. 

Microfluidic CODES relies on micromachined electrode patterns to produce distinguishable signal waveforms that 

provide information on both the location and the physical properties of target particles. In this paper, we introduce 

a machine learning-based decoding algorithm for interpreting signals from a Microfluidic CODES device. Our 

approach utilizes a convolutional neural network, which reduces the constraints on the design of coded electrodes 

and also increases the data processing speed. 
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INTRODUCTION 

Coulter sensing is based on the transient impedance modulation as a particle traverses an electrolyte-filled con-

striction between two electrodes. In its conventional form, the output waveform of a Coulter detector is analyzed to 

find the number and amplitude of pulses to count and size particles, respectively. We have recently developed the 

Microfluidic CODES technology, which employs micropatterned electrode networks for code-multiplexed distrib-

uted Coulter sensing within a microfluidic device [1]. In the Microfluidic CODES, the spatial information from 

suspended particles is compressed into a one-dimensional electrical waveform, which needs to be computationally 

analyzed for recovering the information. In this paper, we introduce an algorithm based on deep learning, specifi-

cally convolutional neural networks (ConvNets) [2], to process code-multiplexed Coulter sensor signals.  

 

THEORY 

The ConvNet is commonly used in image recognition problems due to its effectiveness in representing local 

salience in an image. Two features of the Microfluidic CODES sensor output make the ConvNet well suited to 

perform the signal processing: First, signals generated by the same sensor in Microfluidic CODES share a similar 

pattern, and second, the scale of the sensor signal is related to the physical property of the particle detected. 

We designed a ConvNet with 4 convolutional layers, each of which is followed by a max-pooling layer and 

rectified linear unit (ReLU) nonlinearities (Figure 1). Following the convolutional layers are two fully-connected 

layers and an output layer. The output layer has 13 nodes, in which the first 10 nodes represent 10 classes (i.e., 10 

different coded Coulter sensors on the microfluidic device) and the last 3 nodes represent the bounding parameters, 

namely, the start time, amplitude, and duration of the sensor waveform. Given a signal, the ConvNet predicts the 

identity of the specific sensor and the corresponding bounding parameters. Bounding parameters are then used to 

estimate the flow speed (i.e., signal duration) and the size of the particle (i.e., signal amplitude). When the input 

signal consists of interfering sensor signals due to coincident particles, the ConvNet first detects the strongest sensor 

signal. Once this signal is subtracted from the original input, the residual signal is fed into the same ConvNet in a 

recursive loop. 

 

EXPERIMENTAL 

We tested our ConvNet on a microfluidic device with 10 code-multiplexed Coulter sensors. The device con-

sisted of two layers. The top layer was a microfluidic layer fabricated using soft lithography. The bottom layer 

was a glass substrate with Cr/Au electrodes micropatterned using a lift-off process. The electrodes formed a net-

work of 10 sensors, each encoded by a distinct electrode pattern (Figure 2). The spatial electrode pattern for each 

sensor determined the distinct Coulter signal each sensor produced.  

 



 

Figure 1. The structure of the ConvNet.  

 

 

Figure 2. Image of the fabricated microfluidic device with micromachined coplanar electrodes on a glass substrate aligned 

with PDMS microfluidic channels. The device has 10 Coulter sensors, each of which generates a distinct sensor signal when a 

particle is detected. 

For our testing, we processed human cancer cells suspended in phosphate buffer saline on the microfluidic 

device. The RMS amplitude of the sensor network signal was recorded using a lock-in amplifier. To generate a 

large training dataset, we augmented each non-interfering signal by creating additional ones with different bounding 

parameters (Figure 3a). Then we randomly combined those augmented signals to simulate interfering sensor signals 

for the ConvNet training. For each training case, only the identity of the strongest signal was provided to the Con-

vNet.  

  

RESULTS AND DISCUSSION 

 Figure 3b and 3c show ConvNet predictions for a non-interfering sensor signal and a signal that includes the 

interference of two sensors, respectively. Based on our results, we have achieved >100 times improvement on the 

processing speed compared to the correlation-based analysis employed earlier to process the sensor network data 

[3]. This will potentially enable real-time processing of data from code-multiplexed Coulter sensor networks. 



 

 

 

Figure 3. (a) Each non-interfering sensor signal was augmented by varying the amplitude, scale (duration), and position 

(starting point). After augmentation, single signals were randomly combined to generate interfering sensor signals as the 

training data. (b) Given a non-interfering signal, the ConvNet outputs the probability with which the input belongs to each 

sensor in the network. The identity of the sensor with highest probability was determined as the classification result (sensor 6 

with a probability of 83% in this specific example). The ConvNet also output the bounding parameters, which were used to 

build a bounding box for the signal. (c) Given an interference signal, the strongest sensor signal was first detected and recon-

structed based on the sensor identity and the bounding parameters and was then subtracted from the original signal. 

 

CONCLUSION 

We introduce a new signal processing algorithm for Microfluidic CODES based on deep learning of sensor 

signal features by ConvNets. This machine learning-based signal processing approach significantly simplifies the 

physical design constraints of Microfluidic CODES networks and at the same time, increases the signal processing 

speed, making real-time decoding of sensor data possible. 
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